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Research Questions/Objectives: Methodology: Results: o However, the XG model
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6 Can Al model predict drop size distribution using MRR-Pro Observations? reliably detect very small

drops (< 0.2 mm
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rain drops passing through Predictions Predictions Ny sparse and uncertain in
DSD Model 00 1355 14:00 14:05 14:10 1415 1420 14:25 ] i . . ope
6 Provides drop diameter (0.2 mm to 24.5 mm), count, and derives rain XG Model  vs — RF Model retrice. R2. MAE  Pecreon Time (UTO) " ae S light-rain conditions, the
g ’ ' )

Heavyrain Case Time Series : 2024-09-24

I. . ° ° ofe

rate Metrics: R?, MAE , Pearsons r ! PR — _]) Lightmoderaterain Case Time Series : 2023-11-10 model has limited Clblll‘l'y
* ! !
g0 — AceumeTmm e T to learn accurate patterns
204 ____ Disdrometer (trut
N Accum 14.9 mm ‘l'here
1| = Accum 7.8 mm | MAE 2.91, r 0.847, Bias -0.73 .
60 5] XCBMogel ® The Tropical storm case (h.)

shows a different challenge :

Random Forest VS XGboost:
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& Random Forest (RF, Fig. a) and XGboost (XG, Fig. b) models' performances are compared to the raw MRR-Pro RR size (minute) 9995 4411 3249 990 805 441 7 92 Sum ma r}{:
retrievals across all precipitation types . L . .
_ , p P ),lp , ) o L , & This study demonstrates that Al substantially improves rain-rate retrievals from the MRR-Pro across diverse precipitation regimes, reducing the
8 R squared = coefficient of determination, measures how accurately the model predicts vs the observed Table 1.) Each precipitation regime is evaluated independently, and model L , . , . , ,
, , , raw MRR overestimation and producing results that align more closely with Disdrometer observations. The feature-importance and doppler
& The orange dots represent the MRR-Pro and the blue dots represent the models performance metrics are used to determine which model should advance to the next . . . . . . . o
: . : S : : : : . : . velocity-altitude analyses show that the model captures physically meaningful patterns, including melting-layer processes, confirming that the XG
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Next steps [Drop Size Distribution Model

XG Feature Importance:

| 6 The goal of the DSD model is to train on the MRR-Pro full vertical profile, using reflectivity (Z), Doppler velocity (V), and rain rate (RR) as
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refiectivity (2) spices | @ N Fig. €, the feature & To understand why the model picks inputs to predict the surface raindrop size distribution by producing drop diameters spanning 0.2—24.5 mm, consistent with the Parsivel
. Velocity (V) spikes importances across 20 iterations d.) Velocity vs Altitude 2D Histogram (mean of 20 runs) mid-level velocity features, Fig. d Disdrometer binning. _ _ _
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3305 whether precipitation is 20004" " . & Smaller ice particles melt quickly, i Io_g,»g = Warm Rain T Trersor
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1355 significantly Velocity (m/s) slowly, producing larger drops with | - - 7 - - 0.0 /
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warrant further examination correspond to higher rain rates Rain Rate (mm hr-1)
20 s e céﬁnt (%%Oiteréi'i%ns)ls'o s 200 of what XG is identifying 8 Fig. L) The XGboost model accurately tracks the timing and dominant drop sizes, confirming it has learned the underlying microphysics. However,
these levels it exhibits a systematic underestimation in concentration, especially during high RR periods.
6 Fig. M) The model successfully preserves the regime-dependent relationship between mass-weighted diameter (D,,, ) and RR, capturing the
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