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Research Questions/Objectives:

Improve rain rate estimates across various precipitations regimes using AI

Can one AI model predict different precipitation regimes accurately? 

Can AI model predict drop size distribution using MRR-Pro Observations?
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Instrumentation:
MRR-Pro – A vertical pointing radar operating at K-Band (24 GHz) to observe 

precipitation at different altitudes

Vertical Profiles of precipitation properties such as reflectivity (R), 

doppler velocity (V), and derived rain rate (RR)

Parsivel Disdrometer – Uses laser beam to measure the size and fall velocity of 

rain drops passing through

Provides drop diameter (0.2 mm to 24.5 mm), count, and derives rain 

rate

Random Forest VS XGboost:

Methodology:

Model Performance by Precipitation Regime

Metric All Thunderstorm Light/
Moderate 

Tropical 
Storms Cold Front Heavy 

Rain Drizzle Warm 
Rain

MRR-Pro 
RR at 
105m

R²​ -1.08​ -11.16​ -19.36​ -4.01​ -5.8​ -3.65​ -1.61​ -3.44​

Pearson's 
r ​ 0.79​ 0.9​ 0.87​ 0.69​ 0.82​ 0.77​ 0.76​ 0.85​

MAE 
(mm/hr)​ 1.78​ 4.81​ 1.79​ 7.82​ 1.54​ 5.48​ 0.51​ 7.69​

XGboost

R²​ 0.70 0.65​ 0.93​ 0.63​ 0.85​ 0.57​ 0.57​ 0.91​

Pearson's 
r ​ 0.83​ 0.92​ 0.77​ 0.90​ 0.93​ 0.91​ 0.74​ 0.97​

MAE 
(mm/hr)​ 0.86​ 0.62​ 0.26​ 1.35​ 0.23​ 2.31​ 0.27​ 0.94​

Random 
Forest

R²​ 0.69 0.68​ 0.85​ 0.53​ 0.91​ 0.64​ -1.53​ 0.58​

Pearson's 
r ​ 0.87​ 0.94​ 0.84​ 0.89​ 0.96​ 0.91​ 0.81​ 0.87​

MAE 
(mm/hr)​ 0.82​ 0.64​ 0.26​ 1.67​ 0.16​ 2.31​ 0.44​ 3.34​

Sample 
size (minute)​ 9995​ 4411​ 3249​ 990​ 805​ 441​ 7​ 92

XG Feature Importance:

Summary:
This study demonstrates that AI substantially improves rain-rate retrievals from the MRR-Pro across diverse precipitation regimes, reducing the 

raw MRR overestimation and producing results that align more closely with Disdrometer observations. The feature-importance and doppler 

velocity-altitude analyses show that the model captures physically meaningful patterns, including melting-layer processes, confirming that the XG 

is learning real microphysics rather than noise. Model performance decreases in very light rain, consistent with sensor limitations and sparse 

training examples in that regime. These findings complement the data-collection and observational analysis presented in poster #S249, which 

provides the detailed instrument context that supports the modeling results shown here.

Table 1.) Each precipitation regime is evaluated independently, and model 

performance metrics are used to determine which model should advance to the next 

stage. Regimes with smaller sample sizes (e.g., warm rain and drizzle) show the 

largest differences between RF and XG performance, with XG providing notably 

better estimates. This improvement is likely due to XG boosted-tree learning 

structure, which captures nonlinear patterns more effectively in limited datasets.

In Fig. c, the feature 

importances across 20 iterations 

show how often each reflectivity 

or velocity bin appears in the top 

10% of importance

Longer bars correspond to 

more reliable features

Expected:

Z near surface (105 m) – 

reflects the hydrometeors 

reaching the ground 

Z at 6355 m – indicates 

whether precipitation is 

from a deep cloud 

To understand why the model  picks 

mid-level velocity features, Fig. d 

examines the velocity-altitude 

structure seen by the XG model

• “Counts” represent the 2D 

histogram of doppler velocity vs 

altitudes of sample from all 

precipitation regimes

Two most important velocity 

features are located around the 

melting layer, where ice particles 

transition into rain drops

Smaller ice particles melt quickly, 

producing small drops with lower 

fall speeds, which correspond to 

lower rain rates with a possibly 

shallower melting band

Larger ice particles melt more 

slowly, producing larger drops with 

higher fall speeds, which 

correspond to higher rain rates 

Next steps [Drop Size Distribution Model]:
The goal of the DSD model is to train on the MRR-Pro full vertical profile, using reflectivity (Z), Doppler velocity (V), and rain rate (RR) as 

inputs to predict the surface raindrop size distribution by producing drop diameters spanning 0.2–24.5 mm, consistent with the Parsivel 

Disdrometer binning.

Random Forest (RF, Fig. a) and XGboost (XG, Fig. b) models' performances are compared to the raw MRR-Pro RR 

retrievals across all precipitation types

R squared = coefficient of determination, measures how accurately the model predicts vs the observed 

The orange dots represent the MRR-Pro and the blue dots represent the models

The MRR-Pro, although linearly correlated with the disdometer (Pearson’s r ≈ .8), consistently overestimates RR 

across most samples

Both regression models demonstrate substantial improvement from the MRR-Pro raw RR

Choosing the “best” model just from these two figures is difficult considering how similar they performed

Results:

d.)

Small ice 
particles melt 

faster

Large ice 
particles melt 

slower

Smaller drops=Lower V
Larger drops =Higher V

c.)

b.)

e.)

a.)

g.)

i.)

Unexpected:

Two doppler velocity 

features between 3500 – 

4200 m stand out 

significantly 

Their consistent importances 

warrant further examination 

of what XG is identifying at 

these levels

j.)

f.)

h.)

However, the XG model 

overestimates in drizzle case

Both sensors have intrinsic 

limitations in drizzle:

The Disdrometer cannot 

reliably detect very small 

drops (< 0.2 mm 

diameter), causing light-

rain events to appear 

weaker or even absent 

The MRR-Pro struggles to 

detect weak signals from 

tiny droplets, resulting in 

noisy or unreliable 

retrievals at low rain rates

Training data itself is 

sparse and uncertain in 

light-rain conditions, the 

model has limited ability 

to learn accurate patterns 

there

The Tropical storm case (h.) 

shows a different challenge :

XG underestimates the 

most intense peaks, since 

extreme rain events are 

rare in the training set

Both sensors lose accuracy 

in very heavy rain (e.g., 

Disdrometer saturation), 

causing the models to 

underestimate the rain  

rate

Time series of RR for cases from each precipitation 

regime illustrate the performance of the XG model

Across most cases, the MRR-Pro tends to overestimate 

rain rate, while the XG model substantially reduces 

this bias, producing values that more closely follow 

the Disdrometer observations. A slight overestimation 

remains, but the overall improvement is clear

L.)

M.)

Fig. L) The XGboost model accurately tracks the timing and dominant drop sizes, confirming it has learned the underlying microphysics. However, 

it exhibits a systematic underestimation in concentration, especially during high RR periods.

Fig. M) The model successfully preserves the regime-dependent relationship between mass-weighted diameter (𝐷𝑚 ) and RR, capturing the 

distinct separation between precipitation types. Note that 𝐷𝑚 is biased low at higher rain rates, consistent with the missing large drops

Conclusion: The model captures the structural and regime behavior effectively but maintains a conservative low bias in both concentration and 

drop size.

k.)
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